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FOREWORD

This report was prepared by the Engineering Psychology Branch
of the Behavioral Sciences Laboratory, Aerospace Medical Division,
Wright Air Development Division. The work began as the responsibility
of the Controls Section, under Research and Development Task Number
7182 - 71514 with James V. Bradley acting as Task Scientist. It con-
tinued under subsequent Research and Development Task 7184 - 71581
and was finished by the author as a member of the Maintenance Design
Section. The manuscript was typed at the Aviation Psychology Project,
Miami University, under Contract Number AF 33(616)-5624, under the
technical supervision of Dr. Clarke W. Crannell and Dr, S, A, Switzer,

The material included is the result of a review of the literature
begun early in 1955 with the approval of Mr, John W. Senders, then
Section Chief of the Controls Section, and ending early in 1958. The
author was greatly aided in this effort by I. R. Savage's '"Bibliography
of Nonparametric Statistics and Related Topics', by hundreds of
statisticians and institutions sending reprints and by the encouragement
of his colleagues. He is particularly indebted to Dr., Philburn Ratoosh
who critically reviewed the next-to-final draft, to Dr. Virginia L,
Senders and Dr. Harry J. Jerison whose constant interest helped the
author to maintain momentum, and to Mr. John W, Senders, Dr. H. R.
van Saun, Dr, John P, Hornseth and Major Leroy Pigg who, as Section
Chiefs, exercised their administrative powers in support of the
undertaking,
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ABSTRACT

As a result of an extensive survey of the literature, a large number
of distribution-free statistical tests are examined. Tests are grouped
together primarily according to general type of mathematical derivation
or type of statistical "information" used in conducting the test. Each
of the more important tests is treated under the headings: Rationale,
Null Hypothesis, Assumptions, Treatment of Ties, Efficiency, Appli-
cation, Discussion, Tables, and Sources. Derivations are given
and mathematical interrelationships among the tests are indicated.
Strengths and weaknesses of individual tests, and of distribution-free
tests as a class compared to parametric tests, are discussed.

PUBLICATION REVIEW

WALTER F. GRETHER
Technical Director

Behavioral Sciences Laboratory
Aerospace Medical Division
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CHAPTER I

INTRODUCTION
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Figure 1. Radically nonnormal distribution obtained in a routine
experiment by the author. (Histogram is based on 2520 scores;
smooth curve is normal distribution with same mean, variance and
area as histogram),

1. History

Althoughnonparametric statistics can be traced as far back
as 1710, when John Arbuthnott attempted to prove the wisdom of Divine
Providence using the statistical Sign test, the preponderance of such
tests are of quite recent origin. Van Dantzig and Hemelrijk (7) dis-
tinguish four stages of statistical development. In the first or one-
parameter stage statistical quantities were considered to be constants
such as the ratio of the yearly number of deaths to number of living.
In the second or two-parameter stage variability was recognized as a
factor and it was believed that empirical distributions could be described
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by stating the mean and variance, the parent distribution being assumed
to be a normal distribution. In the third or multiparameter stage, uni-
versal normality was no longer an article of faith, but it was beligved
that an empirical distribution could be described by identifying its mo-
ments in the assumption that ''statistical phenomena were governed by
laws of general validity albeit that they showed somewhat greater com-
plexity than just the normal law.'" The various Types of Pearsonian
Curve were a product of this phase. In the fourth or no-parameter phase
efforts to identify parameters of a parent population in order to be able
to specify its probability law were largely replaced by attempts to deter-
mine ''exact relations, valid for restricted sample sizes.' Savage (38)
places the "true beginning'' of nonparametric statistics in 1936, and it is
indeed at about this time that it began to take the form of a separate
statistical discipline. The rapid growth of activity in this field since
that date can be inferred from Figure 2 which shows the proportion of

PROPORTION OF CONTENTS OF EACH YEAR OF ANNALS OF MATHE-
MATICAL STATISTICS WHICH IS LISTED IN SAVAGE'S "BIBLIOGRAPHY
OF NONPARAMETRIC STATISTICS AND RELATED TOPICS"

1930 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 1952

YEAR OF PUBLICATION

Figure 2. Twenty year growth of activity in the area of nonpara-
metric statistics (as broadly defined by Savage).
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articles in each volume of the Annals of Mathematical Statistics which
are listed in Savage's '""Bibliography of Nonparametric Statistics and
Related Topics''.

2. Definitions

The terms ""nonparametric' and ''distribution-free'!' are neither
semantically satisfactory nor synonymous. This matter has been dis-
cussed at length by Kendall and Sundrum (28) who have attempted defini-
tions of the terms which reflect the theor etical limitations of the tests
to which they are commonly applied. Popular usage, however, has
equated the terms and they will be used interchangeably throughout
this report. Grossly speaking, a nonparametric test is one which
makes no hypothesis about the value of a parameter in a statistical
density function, while a distribution-free test is one which makes no
assumptions about the precise form of the sampled population. Fre-
quently the assumption is made that it is continuously distributed and
sometimes more elaborate assumptions are made such as the assump-
tion that the sampled populations have identical shapes or distributions
symmetrical about the same point. However, the assumptions are
never so elaborate as to imply a population whose distribution is com-
pletely specified. The term distribution-free is somewhat deceptive,
however. The reason that no elaborate assumptions are made about the
distribution of population magnitudes is very simple: the magnitudes
are not used as such in the test. Instead, the ranks, ordinal position,
frequency or some such attribute of the original observations provide
the '"information' used by the test statistic. And of course the '""popu-
lation'' distribution of the attribute used must be known exactly for the
conditions stated in the null hypothesis, just as must the population dis-
tribution of magnitudes in classical statistical tests. An important dis-
tinction should be made, however, While both parametric and nonpara-
metric tests require that the form of a distribution be fully known, that
knowledge, in the parametric case, is generally not forthcoming and the
required distribution of magnitudes must therefore be '"assumed' or
inferred on the basis of approximate or incomplete information. In
the nonpararaetric case, on the other hand, the distribution of the
attribute is usually known precisely from a priori considerations and
need not, therefore, be "assumed.'" The difference, then, is not one
of requirement but rather of what is required and of certainty that the
requirement will be met.

Because they do not use magnitudes as such, distribution-free
tests do not test for parameters computed from them in the same sense



that classical tests test for equal means, say, or identical variances.
Instead, the analogous distribution-free tests might test for equal medians
or identical interquartile ranges, i.e., values which can be computed
from nonmagnitudinal attributes such as frequency, or position in rank
order. Of course, a distribution-free test may be indirectly a test

for parameters based on magnitudes; for exaniple, if symmetrical pop-
ulations can be assumed, then a distribution-free test for equal medians
becomes, in addition, a test for equal means.

Although distribution-free tests generally are not based directly
upon the magnitudes of the original observations, results by Stuart (46,
47) suggest that inferences from some such tests may be extended to
the original magnitudes with a high degree of approximation. Stuart
found very high correlations between observations, from either the
normal or theuniform distribution, and their ranks. The correlations
were respectively .94 and . 96 for samples of 25 observations, and in-
creased with increasing sample size toward limits of .98 and 1. 00.
The existence of these correlations is dependent merely upon the exis-
tence of a variance.

3. Distribution-Free vs Classical Tests

Both distribution-free and classical tests have points of super-
iority, and which type of test should be used depends upon a number of
specific conditions as well as upon the sophistication of the user. The
comparison, however, is generally quite favorable to distribution-free
tests. Some advantages and disadvantages of distribution-free rela-
tive to parametric tests are outlined in the paragraphs to follow.

a. Simplicity of Derivation. Most distribution-free tests can
be derived using simple combinatorial formulae, while the derivation
of classical tests requires a level of mathematics far above the highest
level attained by the typical research worker. However, the logic
and appropriateness of a test's application, the assumptions it makes,
and its sensitivity to assumption violation all hinge upon its derivation.
If the research worker understands the derivation, he can deduce or
infer much of this necessary information for almost any application he
may contemplate, thus operating with a maximum of comprehension and
flexibility., If he does not understand it, he is reduced to the uncom-
prehending '"cookbook' procedures of performing tests by following
a paradigm while obeying certain highly overgeneralized rules of thumb.




In the opinion of the writer this simplicity of derivation is by far the
most important advantage of distribution-free statistics since, for
research workers ignorant of higher mathematics, it replaces a
mystery-cloaked ritual with a truly scientific procedure.

b. Ease of Application.. The mathematical operations re-
quired in computing the test statistic are generally much less involved
for distribution-free than for parametric statistics. Frequently all
that is required is counting, or adding, subtracting and ranking. This
simplicity of application is obviously an economic advantage, permitting
lower-paid, mathematically naive personnel to be employed to reduce
data and perform computations.

c. Speed of Application. When samples are of small or
moderate size, distribution-free methods are generally faster than
parametric techniques. This saving in computation time may be
used to obtain more data, thus frequently cancelling any advantage
the parametric test may have in terms of statistical efficiency. When
samples are large ( say N2 30) distribution-free tests involving
simple counting are generally faster, while those involving ranking
may prove considerably more time consuming, than standard classical
tests. And if a large number of similar tests are to be performed
using an electronic computer, rather than a desk calculator, para-
metric tests are probably faster at all sample sizes.

d. Statistical Efficiency. As indicated in the preceding para-
graphs, when judged by the practical criterion of the total amount of
human effort required to conduct an experiment and analyze its results,
distribution-free tests are frequently, if not generally, more efficient
than their parametric counterparts. When judged by the mathematical
criterion of statistical efficiency, distribution-free tests are often
superior or equal to their most efficient parametric counterparts when
both tests are applied under '"nonparametric" conditions, i.e., condi-
tions meeting all assumptions of the distribution-free test, but failing
to meet some of the assumptions of the parametric test. When both
tests are applied under ''parametric' conditions, i.e., conditions
meeting all assumptions of the parametric test, and therefore of both
tests, distribution-free tests are very slightly less efficient (i, e.,
have relative efficiencies a shade less than 1,00) at extremely small
sample sizes, becoming increasingly less efficient as sample size
increases. When sample size becomes infinite, distribution-free
tests generally have their lowest efficiencies relative to the most




efficient, comparable parametric test., This efficiency value may be
as high as , 955 or as low as zero, depending on the test,

e. Scope of Application. Because they are based on fewer
and less elaborate assumptions than classical tests, distribution-free
tests can be legitimately applied to a much larger class of papulations.

f. Susceptibility to Violation of Assumptions, Obviously the
more elaborate the assumptions the fewer the number of situations which
meet them, and, in this sense, parametric assumptions are the more
susceptible to violation. For example, the parametric assumption of
normality requires that, in addition to being continuously and symmetri-
cally distributed (as might be assumed by nonparametric tests), the
population must also be bell-shaped, since these are all features of
a Gaussian distribution.

g. Detectability of Violations of Assumptions, When the non-
parametric assumption of continuous distributions is violated, both the
fact and the degree of the violation are readily apparent from the exist-
ence of tied scores in the obtained data. No such obvious indication
advises the experimenter that a parametric assumption has been vio-
lated. Of course he may apply tests for normality or homogeneity to
the obtained data, but such tests are rather unsatisfactory. They
are unlikely to detect any but the most extreme violations when samples
are small, and they are almost certain to detect even the most trivial-
ly slight violations when samples are very large.

h. Effect of Assumption Violations, * Although much has been
written about the robustness of classical tests and their insensitivity to
violation of assumptions, this claim actually rests upon a multitude of
qualifications which rarely accompany it, The writer has obtained
completely natural and uncontrived experimental data which, by vio-
lating a single parametric assumption, rendered a standard parametric

=°‘This topic is discussed at length in two WADC Technical Reports
shortly to go to press: Bradley, J. V., Studies in research method-
ology, I: Compatability of psychological measurements with para-
metric assumptions,, and Bradley, J. V., Studies in research method-
ology II: Consequences of violating parametric assumptions - fact and
fallacy.




test completely powerless, at reasonable sample sizes and standard
significance levels, to reject any of a wide range of false hypotheses.
The fact is that any violation of assumptions can be expected to alter
the distribution of the test statistic and change the value at which the
test statistic becomes significant, Whether or not this effect is
negligible depends not only upon the degree to which the assumption
is violated but also upon extrinsic factors such as sample size and
significance level. This is true of toth parametric and distribution-
free tests.

In the nonparametric case, the effects of violation of the con-
tinuity assumption can be mitigated by applying certain methods of
dealinz with tied scores; in the parametric case, the effect of non-
normrality can be reduced by use of transformations, but at consideratly
greater expenditure of time.

i. Type of Measurements Required. Measurements on an
interval or ratio scale are generally required by classical tests., How-
ever, distribution-free tests have greater versatility. They generally
require measurernents on at least an ordinal, or sometimes a nominal,
scale but can te used with measurements from any higher order scale.
They are, of course, the only truly appropriate tests when original
scores exist in the natural form of ranks or small frequencies.

j. Logical Validity of Rejection Region. The distribution of
a classical test statistic is usually continuous, increasing or decreasing
smoothly, without fluctuation, except for a possible change of direction
at a single mode. Unfortunately the point probability of a nonparametric
test statistic does not necessarily always increase as the test statistic
approaches its most probable value. It may level off or even dip before
resuming its climb, This characteristic, when it exists, may be decided-
ly embarrassing when the rejection region for a distribution-free test
is selected, on an intuitive basis. Should the rejection region be chosen
as the cumulative probability for those values of the test statistic, which
are least likely, or those which are most distant from the expected
value of the test statistic?

k. Types of Statistics Testable. Statistics defined in terms
of arithmetical operations upon observation magnitudes can be tested
by classical techniques, while those defined by order relationships (rank)
or catezory-frequencies can be tested by distribution-free methods,




Means and variances are examples of the former, medians and exceed-
ances of the latter. The two approaches are different, but neither is
superior; both types of statistic have their advantages.

1. Testability of Higher Order Interactions. Higher order
interactions can be tested with ease by classical methods. However,
there are few distribution-free tests for higher interactions and they
are awkward and limited in application.

m. Choice of Significance Level, The distribution of the
test statistic, when the null hypothesis is true, is usually continuous
for classical tests and discrete for distribution-free tests. This means
that, for any designated significance level oc, a value of the classical
statistic can be found whose cumulative probability is exactly oc while,
for the distribution-free test, such a value of the test statistic usually
does not exist. Thus when using a classical test the research worker
may choose any significance level he wishes, while, when using a dis-
tribution-free test, he must either accept one of the discrete cumulative
probabilities of the test statistic as his significance level, or he must
apply the test inexactly, using as significance level a cumulative prob-
ability which the test statistic cannot actually assume and rejecting
whenever it is found to have a smaller cumulative probability. The
latter choice is often forced upon him by inexact tables of probabilities
which list values of the test statistic which are ''significant'' at the
standard significance levels, .05, .0l and . 001,

n. Influence of Sample Size. The size of the sample upon
which they are to be used is an extremely important factor in deter-
miining the relative merits of distribution-free and classical tests.
When samples are small (say N £10) distribution-free tests are easier,
quicker and only slightly less efficient even if all assumptions of the
parametric test have been met., At these sample sizes, violations
of parametric assumptions generally have their most devastating effect,
yet are most unlikely to be detected. Therefore, unless the experiment-
er has a priori knowledge that all parametric assumptions have been
met, the wiser choice would generally appear to be a distribution-free
test., When samples are large (say N > 30); some distribution-free
tests still compare favorably with their parametric counterparts, Others,
however, will have become more laborious and time consuming, and, in
contrast to parametric tests whose assumptions are met, their calcu-
lated or tabled probabilities may be only approximate, Finally, their
efficiency relative to a parametric test whose assumptions are all true




may have dropped to an appreciably low level. On the other hand,
appreciable violations of parametric assumptions will have become
more readily detectable and, in many cases, their effect may have
become negligible due to the effect described by the central limit
theorem. At large sample sizes, therefore, either type of test may
be superior; however, circumstances are much more favorable to
parametric tests than is the case when samples are small,

4. Organization of Material

Certain topics appear to be of critical importance to the under -
standing and application of distribution-free tests, These topics will be
discussed in a general way in the following paragraphs and the same topics
will form the paragraph headings under which each of the more important
distribution-free tests will be examined.

a. Rationale. The best insurance against misapplication is a
thorough understanding of the derivation and the mathematical logic
upon which a test is based. The hypothesis which can be tested, the
assumptions which must be made, the seriousness of various degrees
of assumption-violation, the best method of dealing with such violations,
the efficiency of the test, the situations to which it is applicable and the
exactitude of the tables or of the probabilities obtained by formula all
depend upon the test's derivation and can either be directly determined
or partially inferred from a knowledge of it, Furthermore, many tests
are legitimately applicable in situations for which they were not originally
designed; however, the experimenter will not be able to recognize these
situations unless he understands the derivation. Because of their impor-
tance, therefore, derivations have been given at some length. An effort
has been made to use the simplest mathematics possible and to present
derivations which will give the greatest insight into the logic of applica-
tion and the advantages and limitations of the test. For this reason,
many of the derivations are mathematically inefficient and are not in
the form in which they are found in the literature.

b. Null Hypothesis. The literature on a test frequently does
not contain an explicit and precise statement of the tested hypothesis,
Instead the hypothesis may be implicit in some mathematical manipu-
lations, it may be vaguely hinted at, or it may be stated explicitly but
inaccurately, generally in the direction of overstatement. A major
reason for these difficulties appears to be the lack of concise verbal



terms to express what the test is actually doing. In order to avoid
misleading the reader, an attempt has been made to express the tested
hypothesis explicitly and precisely, with resort to expression in mathe-
matical terms when necessary,

c. Assumptions. Assumptions also are frequently unstated,
and occasionally misstated, in the literature, in which case they must
be inferred from the derivation. In common with parametric tests,
the assumptions of random sampling and independent observations are
usually required. These assumptions however refer, at least in a
sense, not to characteristics of the sampled population but rather to
the method of sampling. Unlike 'population' assumptions, their valid-
ity can generally be assured by adhering rigidly to certain prescribed
sampling and experimental procedures,

Aside from the above one of the commonest nonparametric
assumptions is that the sampled populations are continuously distrib-
uted. Such a population has an infinite number of abscissae and thus
contains an infinite number of different score magnitudes, each of which
has zero a priori probability of being drawn. Theoretically, therefore,
a sample from a continuously distributed population will contain no scores
of zero and no tied scores since zero is a predesignated score and since
the first-drawn member of a tied group can be considered to predesignate
the remainder, Zero scores are embarrassing in tests using the alge-
braic sign of scores, and tied scores are undesirable in tests which rank
scores and whose derivation requires that each rank occur only once.

The assumption of continuity, however, is an unrealistic one. Even if
the sampled population is continuous, measurements made upon its
members must be discretely distributed since no measuring instrument is
capable of infinite precision. Suppose any population of actual measure-
ments to be transformed into measurements on a scale running from

zero to one and that precision is possible out to the N-th decimal place.
Then the population of measurements is a discrete population whose
interval width is the difference between successive digits at the N-th
decimal place. The assumption of continuous distributions, therefore,
can never be exactly fulfilled in practice. It can be approximated by
taking fine measurements from distributions representing a very large
number of distinguishable values. Fortunately, the degree to which

the continuity assumption is violated can be largely inferred from the
proportion of tied scores in the data. Therefore, although unrealistic,
this assumption has the advantage that its violations are highly detectable.
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Another assumption frequently encountered is that the sampled
populations have identical, but unspecified, shapes. This assumption
is found in tests which fail to reject when the sampled populations are
identical but which may reject for a variety of reasons. By assuming
identical shapes, rejection may be attributed to nonidentity of location.
It is to be noted that this assumption may be dispensed with if the test
be regarded merely as a test for identical populations against the broad
alternative of nonidentical populations.

d. Treatment of Zero or Tied Scores. As mentioned earlier
some tests require that all scores have an algebraic sign, i.e., that
there are no scores of zero magnitude; others require that no scores
have the same magnitude, i.e., that there are no ties for any given rank.
Zero and tied scores do sometimes occur, however, and several methods
of dealing with them have been suggested:

(1) Randomize. Randomly assign a plus or a minus to
each zero score (say, on the basis of a coin toss); or randomly assign
to scores of the same magnitude the ranks they would have if not tied,
i,e., if differing very slightly. This method appeals to mathematicians,
because only under this method does the test statistic have exactly the
same distribution, when the null hypothesis is true, that it would have
if the continuity assumption were not violated. It makes little sense
experimentally, however, since it permits an additional and, in a
sense, unnecessary, element of pure chance to help determine whether
or not a false hypothesis will be rejected.

(2) Minimize the Probability of Rejection. Assign all
zero scores that algebraic sign which is least conducive to rejection
of the null hypothesis; or assign ranks to tied scores in the way least
conducive to rejection of the null hypothesis. This is the conservative
approach and it alone insures, in advance of sampling, that the tested
hypothesis will not be falsely rejected due to violation of the assump-
tion of continuity.

(3) Obtain the Average Value of the Test Statistic. Assign
half the zeros a plus, half a minus sign; or assign each score in the tied
group-the average of the ranks the members of the group would have if
not tied. The latter is known as the midrank method. It results in a
distribution of ranks having the same mean but somewhat smaller
variance than the discrete rectangular distribution of integers 1 to N.
For some tests a '"correction for ties' has been devised for use with
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the midrank method. When applied to asymptotic formulae for the

test statistic the correction compensates for the reduction in variance
due to the use of midranks. It thus tends to reestablish the validity

of the test in the large-sample case. The logic of the implicit assump-
tions upon which this correction is based has been challenged. (VII-36)
However, the correction is probably an improvement in any case,
although perhaps not fully restoring the test to exactitude.

(4) Obtain the Average Probability. Break ties in all
possible ways, calculate the test statistic and obtain its probability for
each way, and average these probabilities. This improves on the above
method by obtaining the average probability of the test statistic, rather
than the probability for the average value of the test statistic, averaging
over all possible ways in which tied measurements could have been
caused by truly differing scores. It is time consuming, however, and
has the disadvantage, in common with the preceding method, that the
average of all poscibilities may differ greatly from that one possibility
which represents the true state of affairs.

(5) Drop Zeros. Discard zero scores and reduce N
accordingly. The power of certain tests has been found to be greater
under this method than under methods (1) or (3). However, it seems
likely that this is an artifact attributable to an unrecognized and spurious
increase in the probability of rejection in all cases, i.e., when the
tested hypothesis is true as well as when it is false. Zero difference
scores lend support to the hypothesis of ''no difference.' Discarding
them eliminates data favoring the null hypothesis and permits contrary
data to assume greater weight, thus spuriously increasing the probability
of rejection.

A final method is to calculate the test statistic twice,
once giving all ambiguous data (zero or tied scores) the possible true
values which are most conducive to rejection, once giving them the
values least conducive to rejection. It has been said with some justi-
fication, that if in both cases the test statistic falls within, or in both
cases outside of, the rejection region there is no problem; if it does
not, there is no solution.

e. Efficiency. Certain mathematical properties of a test
are important in evaluating its usefulness. The power of a test is
the probability of its rejecting a specified false hypothesis. (It is
equal to 1-B where B is the probability of committing a Type II
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error - failing to reject a false null hypothesis.) Power, then, depends
upon at least four variables: (a) the amount by which the hypothesis is in
error, i,e., the size of the discrepancy, 6, between the hypothesized
and true condition, (b) the size, oc, of the significance level chosen,

(c) the location of the rejection region, e.g., whether the test is one-
tailed or two-tailed, (d) the size, N, of the sample used in the test.

A power function is a curve in which all but one of these variables are
held constant and power is plotted as ordinate against that one variable,
usually 6, as abscissa. A test of a given true hypothesis is most
powerful against a specified alternative hypothesis if no other test of

the same hypothesis has greater power against the same alternative.

If it is most powerful with respect to each member of a class of alter-
native hypotheses, the test is called uniformly most powerful against
that class of alternatives.

A test is unbiassed, for a given alternative, if the probability
of rejecting the null hypothesis is greater when the alternative hypothesis
is true than when the null hypothesis is true.

A test is consistent for a given alternative to the null hypothe-
sis if, when that alternative hypothesis is true, the probability of re-
jecting the false null hypothesis, i.e., the power of the test, approaches
1 as the sample size, N, on which the test is based, approaches infinity.
The test is consistent with respect to a class of alternatives if it is
consistent for each of the alternatives of which the class is composed.

Efficiency is a relative term comparing the sensitivity of a
test with that of some other test, usually the most powerful alternative
available. Let A and B be statistical tests of the same null hypothesis
against the same set of alternative hypotheses, and let the tests use
the same significance level and the same number of tails. Then the
efficiency of test A relative to test B can be interpreted as the ratio
b/a, where a is the number of observations required by test A to equal,
by some criterion, the power of test B based on b observations. There
are actually a number of definitions of efficiency, differing mainly in
the criterion by which the two powers are equated.

Asymptotic efficiency is usually defined in terms of the limiting
value of the ratio b/a as b approaches infinity and is therefore relevant
only when the test is to be applied to very large samples., I has the
advantage of being very nearly independent of the exact size of the
samples so long as they are very large. The more common definitions
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of asymptotic efficiency appear to be equivalent. Asymptotic relative
efficiency, abbreviated A. R. E., and sometimes called Pittman effi-
ciency, is defined roughly as follows. Let A and B be two consistent
tests based upona and b observations respectively, each test statistic
being asymptotically normally distributed. Let both A and B test a
null hypothesis H, against an alternative hypothesis H_ at a signifi-
cance level oc. The asymptotic relative efficiency of A with respect

to B is the limiting value of the ratio b/a as a is allowed to vary in
such a way as to give A the same power as B while, simultaneously,

b approaches infinity and Ha approaches H . The purpose of the
""approach' of H, to Hy is to prevent the ratio b/a from assuming a
limiting value of 1 which it otherwise would do since at extremely large
sample sizes the power of a consistent test against a fixed alternative
is virtually 1. The method of obtaining asymptotic relative efficiency
has been shown to be equivalent (Stuart V-50) to that of obtaining
asymptotic local efficiency, Let A and B be one-tailed tests based on
a and b observations respectively and testing the same null hypothesis
against the same set of alternative hypotheses at the same significance
level. Let b approach infinity and vary a so that the power functions
of the two tests have equal slopes at the point H,. Then the limiting
ratio b/a is the asymptotic local efficiency of test A relative to test B.
Somewhat similar methods involve taking the asymptotic ratio of first
derivatives, i.e. slopes, of the power functions at the point Hy. In the
case of equal-tailed, two-tailed tests this is zero and the asymptotic
ratio of second derivatives is used. Estimate efficiency is obtained by
establishing a mathematical equivalence between relative efficiency of
two tests and the relative efficiency of two estimators of a population
parameter. The latter requires that both estimates be consistent and
asymptotically normally distributed and is expressed in terms of the
ratio of the asymptotic variances of the two estimators. Estimate ef-
ficiency is therefore an index of relative efficiency for the case where
both tests are based upon large, i.e. '"infinite', samples. Stuart (VI-
26) observes that estimate efficiency is equivalent to asymptotic relative
efficiency. All of the asymptotic efficiencies defined above refer to
the relative power of two tests at the point H, of their power functions.
The efficiency values obtained therefore represent the effectiveness

of one test relative to another when the true condition differs negligibly
from the hypothesized condition, i.e., when the alternative hypothesis
lies in the immediate vicinity of the null hypothesis.

Nonasymptotic efficiencies depend upon the size sample upon
which the test is based, upon the location of the rejection region, upon
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the size oc of the significance level chosen, and upon the alternative
hypothesis or set of alternative hypotheses. Balancing the disadvan-
tage that nonasymptotic efficiencies are highly specific to experiment-
al test conditions, is the advantage that they are quite realistic to
those conditions. While asymptotic efficiencies provide a limiting
value for a test's efficiency at infinite sample size, this value is
generally much lower, when distribution-free statistics are compared
with classical tests, than is the efficiency value at practical sample
sizes. The relative efficiency of A with respect to B is simply b/a
where a is the number of observations required by test A to equal the
power of test B based on b observations when both statistics test the
same null hypothesis against the same alternative at the same signi-
ficance level (both either one-tailed or two-tailed). The power effi-
ciency of test A with respect to test B (of the same null hypothesis

at the same significance level against the same set of alternative
hypotheses) is obtained by holding a constant and varying b until the
power functions of the two tests are equated in the sense that the area
between the power functions when the ordinate for test A exceeds that
of test B equals the area between the power functions when the reverse
is true. The value taken by b need not be integral. The power effi-
ciency of A relative to B is then b/a. This definition of efficiency has
the advantage that the obtained efficiency values are peculiar to an
entire class of alternative hypotheses rather than to a specific alter-
native hypothesis. Its disadvantage lies in the failure of statisticians
to agree completely upon the precise method by which to apply it.

Some asymptotic efficiencies of some distribution-free tests
relative to their classical counterparts are given in Table I. All
efficiencies given in the body of the table are for the case where both
tests are applied under conditions satisfying all of the assumptions
of the classical test. Except when otherwise specified, the tests
were applied to normally distributed populations; comparisons in-
volving Student's t required that the two populations to which both
tests were applied have equal variances, etc. When more than one
efficiency is listed in a cell, the asymptotic efficiency of the test de-
pends upon the number of categories or groups to which the test is
applied. An asymptotic efficiency of zero requires some interpreta-
tion. It means that, when both tests are based upon an equal and "in-
finite' number of observations, the test with zero asymptotic efficiency
requires 'infinitely' more observations in order to equal the power of
the comparison test. It does not mean that the ratio of the powers of
the two tests is zero or infinity. The power of any consistent test
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TABLE I

EFFICIENCIES OF SOME DISTRIBUTION-FREE TESTS RELATIVE TO, AND UNDER
CONDITIONS ASSUMED BY, A (MOST POWERFUL) CLASSICAL,COMPARISON STATISTIC*

Asymptotic
Test Efficiency Established by Footnotes
Student's t* 1,000
X-test 1.000 van der Waeraden
Mann-Whitney . 955 Pitman, Mood, Dwass,
van der Waerden C, U, 1
Sign .637 Cochran, Jeeves & Rich-
ards, Dixon, Walsh C
Westenberg Median .637 Mood
No. Runs {(Location) 0 Pitman, Mood C
Analysis of Variance* 1. 000
Kruskal-Wallis H . 955 Andrews C, 2
Friedman .637-.912 Friedman
k-Sample Median .637 Andrews C, 3
F - Ratio* 1.000
Mood's Dispersion . 87 Mood, Dwass
. No. Runs (Dispersion) 0 Pitman, Mood C
Maximum Likelihood* 1.000
5, for Dispersion .74 Cox & Stuart
S3 for Dispersion LTl Cox & Stuart
Correlation Coeff, * 1. 000
Kendall' v .912 Moran
Spearman's p .912 Hotelling & Pabst
Blomgqvist's Median Test . 405 Blomqvist
Regression Coeff. b* 1. 000
Mann's T . 985 Stuart -C, U
Daniels . 985 Stuart
Cox & Stuart's Sl . 860 Stuart
Cox & Stuart's S3 . 827 Stuart
Cox & Stuart's SZ .782 Stuart
Median test for Trend .782 Stuart
Rank Serial Ry 0 Stuart (&
Records test d 0 Stuart C
Difference sign 0 Stuart C
Turning Point 0 Stuart

C - test has been shown to be consistent under certain conditions.

U - test has been shown to be unbiased under certain conditions.

1 - Asymptotic efficiency is 1. 000 when populations have uniform distributions (Pitman).
2 - Asymptotic efficiency is 1. 000 when populations have uniform distributions (Andrews).
3 - Asymptotic efficiency is . 333 when populations have uniform distributions {(Andrews).
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TABLE II

POWER COMPARISONS OF SOME STATISTICAL TESTS APPLIED TO THE SAME DATA

Tasts in Ordar of Decrsas. Null Sig. Author and Type
ing Power (within a block) Hypothesia Assumptions Sample Sisss Levsl of Comparison
Student's t-tast Normal 3,3i 1,@; 2,m; 5,e; 3,7
X-tast Equal Distributions |3,7; 5,6 van der Waardan
Mann-Whitnay Maans Equal 3,3; 3,7; 5,6; 1,,0; 2,00 .05
Max.Absolute Daviation Variancss 3,7, 5,6, 5,0 Mathematical
Number of Runs 3,7, 5,6: 5,

Equal Uniform van der Wasrdan
X-tast Maans Diatributions 4,6 .05
Mann-Whitnay Equal Mathamatical
Student's t-tast Variancss
Mann-Whitnay Equal Normal Dixon
Max. Absclute Deviation Mgaans Distributions 5,5 . 025
Wsastanbarg Median Equal Mathematical

Variancss

Mann-Whitnsy Normal Epstain
Tsao's Max, Abs, Dav. Equal Distributions
Epstain's Excssdancas Masans Equal 10, 10 . 05 Empirical
Number of Runs Variancss
Lehmann's Most Powarful Idantical Continuous
Mann-Whitnsy (1-tailsd} Populations Distributions
Westenbsrg Median " against y's 4,4, 6,6 .10 Lehmann
Mann- Whitnay (2-tailad) Distributed
Wastanbarg Madian " as Maxi- Mathematical
Max. Absclute Deviation mum x's
Numbsr of Runs
Regrassion Cosfficient b Normal
Mann's T-tast Distributions
Danisls Randomnass Fostar & Stuart
Fostar & Stuart's D against 100 .05
Fostsr & Stuart's 4 Linsar & Empirical
Rank Serial Correlation Trand .01
Diffsrsncs Sign
Turning Point
Numbasr of Runs Randomness .05 Bateman
Longeat Run vs. Markoff

Chain Mathamatical
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approaches 1 as sample size approaches infinity. Therefore when a
consistent test has an asymptotic efficiency of zero both its power and
the power of the comparison test are very close to 1 and are approach-
ing 1 as sample size approaches infinity. The power of the comparison
test, however, is approaching 1 faster. That is, at any "infinite', i.e.
extremely large, sample size the power of the comparison statistic is
very slightly greater than that of the test whose efficiency is sought,

but "infinitely", i.e. very many, more observations are required by
the test with zero asymptotic efficiency to close this infinitesimal
power gap. Finally, tests with zero asymptotic efficiency with respect
to the same comparison test do not necessarily have equal asymptotic
efficiency with respect to one another. For example, each of the four
tests in Table I having zero asymptotic efficiency with regard to the
regression coefficient has zero asymptotic efficiency with respect to

all of the seven to ten tests listed above it.

A number of investigators have compared the relative powers
of distribution-free tests with respect to each other without actually cal-
culating small-sample efficiencies. They have simply been compared
under identical conditions of application and then ranked in order of power.
Sometimes a most powerful classical statistic was included. The results
(see Table II) of these comparisons are naturally highly peculiar to the
conditions under which the comparison occurred.

Certain statisticians (17, 31, 49, 50) have addressed them-
selves to the problem of determining "most powerful' distribution-free
tests. Although successful, the gain in power is usually slight and is
generally obtained at the expense of simplicity. Furthermore, the pro-
perty of greatest power is contingent upon the type of distribution assumed
to exist when the null hypothesis is false. Lehmann (31) has obtained
the most powerful rank test for the hypothesis that two populations have
identical distributions against the alternative that the second population
is distributed as the k largest observations in the first population.
Terry (49) has described the rank test which is asymptotically most
powerful, at the point H,, for testing the hypothesis of identical dis-
tributions against the alternative that the two populations are normally
distributed with the same variance but with different means. His test
procedure requires that the N; + N, observations be ranked in order
of magnitude irrespective of sample. He then substitutes for each rank
the average magnitude corresponding to that rank in the average sample
of size N; + N, from a normal distribution with zero mean and unit
variance. This is accomplished by means of tables (XX and XXI)
supplied by Fisher and Yates (13). Thus scores from a population
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of unknown form are, in a sense, transformed so as to represent scores
from a normal distribution. Exact tables of probabilities are available
for Terry's test for N; + N, < 10, an asymptotically normally distri-
buted test statistic being used for large samples. A somewhat similar
test, the X-test, has been proposed by van der Waerden (50, 51). The
power of the X-test can equal that of Student's t-test when applied to
normally distributed populations (50) and can exceed the power of

the t-test when both are applied to uniformly distributed populations
(52). Both Terry's and van der Waerden's tests are analogous to,

and appear to be slightly more powerful than, the Mann-Whitney test.
Both have the dubious advantage of giving greater '"weight' to extreme
observations than does the Mann-Whitney test (7). Neither, however,
can compare with the latter in simplicity or ease of application. Fur-
thermore the quality of high power against "parametric', i.e. normal,
alternatives, while useful is not an overriding consideration in select-
ing a nonparametric test. It is a useful property in those cases where
populations are normal and variances homogeneous but the experimenter
does not have certain knowledge of this fact, i.e., when a distribution-
free test is necessitated by the experimenter!s ignorance rather than
the population's nonnormality.

f. Application. The applicability of most tests is directly
deducible from the derivation as is the method of application. Further-
more, many, if not all, distribution-free tests are applicable in situa-
tions other than those for which they were originally designed, and it
would be quite impossible to anticipate all such situations and to out-
line the test!s method of application in each of them. Therefore, only
the briefest example will be given of the application of each distribution-
free test, and the "Application'" section will often be used to illustrate
or expand upon points made in presenting the test's derivation.

g. Discussion. Tests which upon superficial examination
appear to be quite distinct may actually be identical or similar in
function, i.e., may ultimately perform the same or nearly the same
mathematical operation. In other cases, although different, they may
be mathematically interrelated to a high degree. Not infrequently the
author of a test overstates, understates or misstates the test's capabil-
ities, Such matters are taken up in each test!s "Discussion' section.

h. Tables. For most distribution-free tests probabilities are
based upon simple combinatorial formulae. The point probability of a
given value of the test statistic is generally a fraction whose numerator
is the number of different ways (combinations) in which that value of the
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test statistic can be obtained and whose denominator is the sum of

the number of different ways in which all possikle values of the test
statistic can be obtained. Such tests are usually exact for small
samples whose N is small enough to permit enumeration of the com-
binations constituting the numerator of the (cumulated) probability
fraction. (The denominator is usually easy to obtain.) The time

and labor involved in these computations increases drastically with
increasing N, however, so that exact tables frequently do not extend
beyond an N of very moderate size. For larger N!s approximate
probabilities may generally be obtained fairly easily from asymptotic
formulae, and at this point the tables, if they continue, become inexact.
The approximation is usually very good for large values of N. There
is sometimes a gap, however, between the largest N for which exact
probabilities have been tabled and the smallest N at which the asymptotic
approximation is gocod.

The existence of adequate tables is an important criterion for
the acceptability of a distribution-free test. There is practically no
limit to the number of distribution-free tests whicli can be devised on
a sound mathematical basis. However, a test for which no tables
have been computed is of very limited value unless exact cumulated
probabilities can be easily computed by formula, or unless the asymp-
totic approximation is good at small sample sizes, neither of which
is likely to be the case.

i. Sources. The survey of literature upon which this report
is based was confined almost entirely to publications written in English.
However, not all of the relevant English publications were reviewed and
only a fraction ot those reviewed are reported. The number of relevant
articles is immense and increases exponentially as one broadens onels
definition of what is nonparametric. An attempt was made only to cover
tests, of broad applicability, whose probabilities can be calculated ex-
actly when samples are small, and which, when sampling from a con-
tinuously distributed population, do not specify the exact form of that
distribution, This criterion, for example, eliminated tests of card
matching, which apparently find application only in experiments on
extra-sensory perception, approximate tests or parametric tests used
in violation of their assumptions, and tests requiring such nonclassical
but specific distributions as a Poisson or an exponential. Despite efforts
at thoroughness, however, it is virtually certain that relevant tests meeting
all these criteria have escaped the writer!s attention; in some cases such
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tests were detected, but were unobtainable., Noc claim is made for
complete coverage; however, it is felt that a core of better known
and more important tests has been covered fairly adequately.

In the following chapters tests have been grouped together
largely on the basis of a common type of mathematical derivation,
sometimes according to the type of sample information used, and
occasionally according to the type of function which the test serves.
Only the simplest, most extensively tabled, and most promising tests
have been treated at length, Sources are referenced in the treatment
of each test and are listed at the end of each chapter. (Occasionally
reference will be made to a source listed in the bibliography of a
different chapter, in which case the Arabic reference number will
be preceded by a Roman numeral indicating the number of the chapter
in which the referenced source is listed.) Because the number of
sources relevant to a given test or to a general topic may be quite
large, those sources regarded as most critical have been indicated
by printing their authors' names in capital letters. Primary sources
(or, in some cases, the nearest thing to a primary source) for a
unique distribution-free test have been indicated by an asterisk.
Sources containing tables of probabilities for a distribution-free
test have been indicated by placing a capital T in the left margin.

If the source contains tables for more than one such test, two T's
are used; and, if a table is an extensive one, the T is underlined.
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CHAPTER 11

TESTS BASED ON THE BINOMIAL DISTRIBUTION

A number of distribution-free test statistics are binomaially
distributed. They are among the simplest, safest, most nearly
exact and most extensively tabled nonparametric tests. Their
statistical efficiency is not the highest, but is generally not so low
as to nullify their other advantages. The sample information used
by most of them is simply the direction of the difference between
two scores, i.e., the algebraic sign of the difference. Binomial
tests are extremely versatile, finding application in testing for loca-
tion, trend (in either location or dispersion), randomness of predict-
ed order, and in the setting of confidence limits for quantiles.
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1. Introduction

Suppose that all of the possible outcomes of an event may
be dichotomized into two mutually exclusive categories, arbitrarily
labeled '"'success'' and 'failure'', these two outcomes having proba-
bilities p and q= 1 - p respectively, Then if the event is permitted
to occur n times, the probability that r of the n outcomes will be

successes is Pr(r) =(Ilf) prqn-r which is the general expression for a

term in the expansion of the binomial (p+q)n.

Proof: The probability that r successes and n - r failures
will occur in a specified order is p'q""Y. For example, letting sub-
scripts indicate order of appearance, the probability for the order in
which all successes occur first, followed by all failures, is the

=7

product (p;) (p,) ... (P,) (a.4;) (a,,5) +.. (q,) =P"q" F. However,

since we seek only the probability of a given frequency of successes,
the probability prqn-r of a given frequency of successes occurring

in a specified pattern must be multiplied by the number of patterns
which r successes and (n-r) failures can assume. If the n units

(p's and gl's) were all distinguishable, the number of unique patterns
would be n?, the number of permutations of n things. They are not
all distinguishable however. In each distinguishable pattern, the r
successes can be permuted with one another in r! ways without
changing the pattern. And for each such permutation of successes,
the n-r failures can be permuted in (n-r)} ways without changing the
appearance of the pattern. The number of permutations, n!, then
must be the number of distinguishable patterns times r!(n-r)!, the
number of ways each distinguishable pattern can be permuted without
altering its appearance. The number of distinguishable patterns is

1 . . .
therefore T(_n—'yt_ , which is, of course, the number of combina-
ri(n-r)!

tions of n things taken r at a time, frequently expressed by the symbol

n s
(+) ¢ The probability of exactly r successes in n trials is therefore
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(?) p q™"T, and the cumulative probability, i.e., the probability of
r or fewer successes in n trials is iz(l)‘ (ril) p1 qn-l.

The binomial term (;1) pTq" ™" expresses the probability for

r successes out of n trials only if the following conditions, implicit
in its derivation, are met:

(a) Outcomes must be capable of being dichotomized (Since
only two outcome probabilities, p and q, are used in the derivation.)

(b) 'i‘he two outcome categories must be mutually exclusive
(since qz1 -p).

(c) The outcome of the n events must be completely inde -
pendent, (Since the same value, p, is used to express the probability
of success on each of the n trials, the probability of success on a sin-
gle trial must not change from one trial to another and, therefore,
must not be influenced by the outcome of any other trial. )

(d) "Events'" must be randomly selected. (The formula

(¥) p°q®T gives the probability that by chance r successes will
occur in n trials if the chance probability of success in a single trial
is p. If events are not randomly selected, then outcomes are sus-
ceptible to nonchance influences.) There must therefore be no bias
or system in the selection of which n trials, out of an infinite popula-
tion of potential trials, to test. Specifically, among other things
this means that none of the valid data may be systematically excluded
from the test.

The above qualifications will appear in modified form as
assumptions for all tests whose test statistic is binomially distri-
buted., Such tests are outstanding among distribution-free tests for
two reasons: First they are extremely simple, both in derivation
and in application. Second exact probabilities for both the point
(20, 28) and cumulative (34, 25, 28) binomial have been extensively
tabled. Thus, while for most distribution-free tests large nl!s re-
quire probabilities to be calculated approximately from asymptotic
formulae, in the case of binomial tests exact probabilities are readily
attainable for many large samples.
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The mean and variance of a binomially distributed variate
are np and npq respectively (for proof see Hoel [ 1-21] pp. 65-67),
and when n is large and p is close to .50 the binomial is closely ap-
proximated by the normal distribution. The critical ratio for r,

the number of successes, is therefore %&.‘.—1/—2 the 1/2

being a correction for continuity. The normal approximation should
not be used except for those cases not covered by the extensive binomial
tables which are now available., The approximation is reasonably good
so long as the product np is greater than 5, Even when this criterion
is met, however, the approximation is likely to be poor at the extreme
tails of the distribution, especially when n is small (say less than 100).
The inaccuracy of the normal approximation can be expectedto increase
therefore with decreasing n, with increasing departures of p from , 50
in either direction, and with decreasing, i.e. more and more extreme,
significance levels.

2. The Sign Test for the Median Difference

a. Rationale. Suppose that n pairs of measurements have been
taken, one member of each pair having been taken under condition A,
the other under condition B, and that a B measurement is as likely to
exceed as to be exceeded by its paired A measurement, Then, if
zero differences are impossible, the differences A1 B can be either
positive or negative and the outcome ''positive'! is bmom1a11y distributed
with probability p=1/2. For example, John Arbuthnott (1) found that
every year from 1629 to 1710 the number of males born in the city of
London exceeded the number of females. If male and female babies
are equally likely, the chance probability of the reported results is

82 . ; .
28 (?) (1/2)n = (1/2)"%, (Arbuthnott obtained this result and inter-

Preted the excess of male births as a manifestation of Divine Providence,
which he believed to be allowing precisely for the greater mortality rate
among males ""who must seek their Food with danger!'', so as to leave a
perfect equality of sexes at the age of mating. )

b. Null Hypothesis. For every Ai-Bi difference, Pr(Ai>Bi) =
Pr(Ai<Bi)=1/2' Sufficient conditions for its validity are that both the A
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population and the B population are continuously distributed and the
population of A - B differences has a median of zero.

c. Assumptions. Since binomial tests require that outcomes
must be of two types only, there must be no zero differences, i.e.,
the members of no pair shall be 'tied.' Frequently this require.ment
is expressed by the more restrictive assumption that the population
of differences is continuously distributed. Since the outcomes of
binomial events must be independent, the sign of the difference for
one pair must have no influence upon the sign of the difference for
any other pair, This means among other things, that a given A
measurement shall be paired once and only once with a measurement
from the B population. Finally, the sample of measurements must
have been randomly selected from the parent population of differences.

d. Treatment of Ties. The null hypothesis is that

= = . Therefore P (A, = B.) must equal
Pr(Ai>Bi) = Pr(Ai<Bi) 1/2 r( i ;

zero. Zero differences constitute a third category of outcomes.

Since the Sign test is based upon the binomial distribution which re-
quires that outcomes fall into two mutually exclusive classes, zero
differences are decidedly embarrassing. They can occur for two
reasons: because a noninfinitesimal proportion of the parent popu-
lation of differences is zero, or because, although this is not the case,
zero differences are obtained due to the inability of the measuring in-
strument to achieve infinite precision. In the former case, the Sign
test simply is not appropriate. For the latter case, various methods
have been recommended for disposing of zero differences. They can
be dropped and n reduced accordingly (14, I-8, 27). Half may be treat-
ed as plusses, half as minuses (8, 27). They may be replaced by signs
""drawn'' randomly from an infinite population half of whose members are
Plusses, half of which are minuses (27). Or all zeros may be treated

as if they had the algebraic sign least conducive to rejection of the null
hypothesis.

The Sign test has greatest power when zero differences are
dealt with according to the first alternative. However, the greater
power resulting from use of this method is not necessarily an argu-
ment for its adoption. A zero, being in a sense '"halfway between'
a plus and a minus suggests that plusses and minuses are equally
likely. By ignoring, i.e. discarding, data which lend support to the
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null hypothesis, one naturally increases the probability of rejecting
that hypothesis and consequently enhances the power of the test. The
probability of rejecting a true null hypothesis has also increased,
however, and the apparent gain in power is attributable to a subtle
increase in the "true', as contrasted with the nominal, significance
level. For example, consider 1000 differences of which 960 are
zero, 13 plus and 27 minus. If half of the zeros are regarded as
plus and half as minus and the two-tailed Sign test is applied to the
493 plusses and 507 minuses, the cumulative probability is . 681,

If the zero differences are discarded and the test is applied to the

13 plusses and 27 minuses, the cumulative probability falls within
the .05 level of significance. Assuming that half the zeros actually
represent plus scores, half minus scores, the '"true'' cumulative
probability is . 681 in both cases. However, in the latter case the
experimenter believes his significance level to be . 05 when actually
the true significance level corresponding to this alleged figure would
be some figure greater than .681. Thus discarding the zeros biases
the test toward rejection.

The "randomization' method preserves exactly the mathemat-
ical conditions upon which the validity of the Sign test depends. How-
ever, it makes little sense experimentally. Normally one interprets
small chance probabilities as implying the presence of a nonchance
effect. But if it is known that pure chance determined a substantial
portion of one's results, then small chance probabilities may imply
unlikely chance effects as strongly as (or more strongly than) non-
chance effects. In such cases the null hypothesis may remain as
reasonable as any alternative hypothesis. Ambiguities may also
arise in marginal situations. Suppose for example that an experi-
menter using the .05 level of significance obtains significant results
after "randomizing' zeros, but discovers that his results would have
a '"chance' probability of .15 had he regarded half the zeros as plusses,
half as minuses., The reverse situation would be equally distressing.

The first three methods of dealing with zero differences are
based upon an implicit assumption that zero differences represent true
differences which, if measured with infinite accuracy, would be found
to be positive half of the time, negative half of the time. However,
if zero differences are due to imprecisiond measurement, as it is
assumed, such a 50-50 split is by no means assured. The "measuring
instrument' might be such that all differences between -.0015 and
+.0040 were measured as zero. One would then expect the preponder -
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ance of recorded zeros to represent true plusses.

None of the methods of dealing with zero differences, there-
fore, is entirely satisfactory. Giving all zeros the sign least condu-
cive to rejection is the safest method while, in the long run, the average
probability error is minimized by treating half the zeros as plusses,
half as minuses. If only a small proportion of the differences are zero,
say less than 5%, one would expect the "error" introduced by zero
differences generally to be of small practical consequence. However,
when zeros constitute a substantial proportion of the data, considerable
caution should be used in applying the Sign test.

e. Efficiency. A normal distribution is symmetrical with median
equal to mean. Therefore, if applied to a normally distributed popula-
tion of differences, the Sign test for the median difference is equally a
test for the mean difference and can legitimately be compared with
Student!s t-test. Under the conditions stated, the one-tailed Sign
test has, relative to Student!s t, an asymptotic efficiency of 2/x or
.637. This same figure is obtained whether the asymptotic efficiency
be an estimate efficiency (4, 44) A. R. E, (15), or an efficiency of
certain other types (7, 15, 16). It refers, of course, to the case
where the discrepancy 6 between the true difference and hypothesized
difference is zero, i.e., very slight. If samples are of infinite size,
the efficiency of the Sign test is independent of the sizea of the signi-
ficance level, but decreases from . 637 to a limiting value of . 500
as § increases from zero to infinity (15).

The small sample efficiency of the Sign test depends strongly
upon the precise definition of efficiency chosen (2). It decreases with
increasing values of n, a and 6 (7). Small sample efficiencies as
high as . 96 have been found (43).

Power functions for the Sign test have been published by Dixon
(7) and by Walsh (42). Stewart (36) has prepared tables giving the
sample size at which a false null hypothesis (p =.50) will have a given
probability of rejection, i.e., testwill have agiven power, at the .05
level of significance, for various ''true' values of p. The test is con-
sistent provided only that p# q, i.e., in the present case provided only
that the null hypothesis is false (14).

f. Application. Subtract each B score from its matched, i.e.
paired, A score. If a small proportion of the differences are zero,
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"assign'' half of them a positive sign, half a negative sign; if there
are an odd number of zero differences, discard one zero difference,
reduce n by one, and proceed as above. Let r be the number of
plusses and n-r be the number of minuses after the zeros have been
"assigned.'" Then the cumulative probability of obtaining r or fewer

plusses by chance if the null hypothesis is true is ,z‘,; (?) Wz
i=

If a two-tailed test is required, one rejects the null hypothesis if this
cumulative probability equals or is less than a/2 or equals or exceeds
l1-a/2. If a one-tailed test is required and the alternative hypothesis
is that the median difference is less than zero, the null hypothesis is

rejected if izrb (I;) 1/2n<a. For the opposite alternative, reject
if the summation equals or exceeds l-a.

g. Tables. Probabilities can be most accurately obtained
from tables of the cumulative binomial (34, 25, 28, 46) entered with

p=.50. Other tables (4, 8, 26, 1-8, 1-23, I-43, I-59) have been
designed specifically for the Sign test.

h, Discussion. Mathematically the Sign test simply tests
the hypothesis that the parameter, p, of a binomial population has the
value .50, In equivalent experimental terms it tests the null hypothe-
sis that the population of A-B differences has a median of zero. The
inference is frequently made that if the median difference is zero, then
the A population and the B population are equally ''good' in a quantitative
sense. Such an inference cannot legitimately be made without introduc-
ing an additional assumption: that the A-B differences are symmetri-
cally distributed about zero. Without this assumption one can legiti-
mately infer that half of the units comprising the A population are superior
to the units with which they happen to be matched in the B puopulation
and that half of the B units are superior to their paired mates from the
A population, but_not that these two ''superiorities' represent equivalent
difference magnitudes, It is to be noted that the assumption of symmetry
requires that the mean difference be zero.

By adding M to each B score before subtraction from its paired
A score, one can test the null hypothesis that the median difference is
M. I the assumption of symmetry can justifiably be made, one can
test the hypothesis that the mean difference is M, or, in other words,
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that the A population is on the average M units '"better'' than the B
population. By multiplying each B score by 1+100p before subtraction,
one can, under the assumption of symmetry, test the hypothesis that
the A population is on the average p percent ''better' than the B popu-
lation. (See 8 or 26)

The preceding discussion has assumed that every A score has
the same parent population and likewise for every B score. Actually
the formula holds good even if every A or B score comes from a differ-
ent population so long as each population corresponding to a given A-B
difference has zero median. The null hypothesis tested is that all of
the populations from which the A-B differences were '"drawn' have zero
median, This type of application should be approached with caution,
however. Suppose, for example, that half of the pairs represent popu-
lations in which Als are truly superior to B!s while the reverse is true
for the other half. Although the null hypothesis is entirely false, the
probability of its rejection is no greater than if it were true. Again,
suppose that for a tenthof the pairs A's are truly superior to B's while
for the remainder there is no real difference. The power of the test
would be much greater if that tenth of the data were tested separately.
Applications of the type described, therefore, may greatly reduce the
power of the test, and even when the null hypothesis is rejected, it is
not at all clear what alternative hypothesis is indicated. Finally, in
this type of application, the modifications described in the preceding
paragraph become meaningless and should not be used.

It has been stated that the Sign test is particularly appropriate
when the members of each pair were subjected to similar treatment,
but when treatments differed from one pair to another. This, of
course, represents a special case of the application discussed above.
Here it is implied that a number of variables may have a real effect
upon the absolute values of the A's, the B's or even the A-B differ-
ences, but that only one variable, the one in which the experimenter
is interested, can have a real effect upon the direction of the A-B
differences, i.e., the signs of the differences. This is not necessar-
ily an unrealistic assumption. For example, the A's and B's might
be positions of seismograph needles during, and an hour previous to,
an hypothesized tremor. The seismographs being located in widely
different parts of the world, the A-B differences would be expected to
vary in size with distance from the source of tremor. Furthermore,
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the numerical size of the difference might be reported in metric units
by some and in British units of measurement by others. These con-
siderations would preclude the use of a t-test, but not the Sign test
since the variable mentioned would affect the size but not the direction
of the differences.

It is extremely important, however, that no variable causing
differences between pairs shall interact with the variable in which the
experimenter is interested, i.e., shall differentially affect the sign of
the difference between members of a pair. Suppose, for example, that
A and B are two strains of wheat and that some of the AB pairs were
grown in a northeastern county, the rest in a southwestern county. If
the former location has a moist climate, the latter a dry one, it may
well be that A is superior to B in one location and inferior in the other.
Subjecting pairs to different treatments, therefore, may introduce subtle
and spurious interactions between '"tested" and '"nontested'' effects with
the result that the power of the test is reduced and the true alternative
hypothesis may differ greatly from the alleged one.

i. Sources. 1, 2, 4, 7, 8, 10, 12, 13, 14, 15, 16, 26, 27, 30,

36, 42, 43, 44, 45, 1-2, 1-3, 1-8, I-11, I-21, 1-23, I-28, I-35, 1-43,
1-54, I-59.

3. The Sign Test for the Median

a. Rationale. Suppose that n observations, Xi‘s, are taken
from a continuously distributed population whose median is M. Then
half of the observations, on the average, should fall above M, half
below, i.e., the number of observations falling above M is binomially
distributed with p=.50. Thus, the number of observations above an
hypothesized median M can be used to test the validity of the hypothesis.
But the number of observations above M is the same as the number of
positive differences if M is subtracted from each observation. The
Sign test for the median, therefore, is equivalent to the Sign test for
the median difference in which the X;!s constitute the A population and
the B population consists of the single value M.

b. Null Hypothesis. For every X,, Pr(Xi>M)=Pr(Xi<M)=1/2.

Sufficient conditions for its validity are that the X's are drawn indepen-
dently and are continuously distributed with a common population median
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M. It is in fact only necessary to assume that the X's are continuous-
ly distributed in the neighborhood of M.

Ca ———L—Assum tions. (l) Pr (Xi=M)=O’ io €., none of the

observations must fall on the hypothesized median.

(2) Whether a given X; falls above or below
M is independent of the position of any other X; with respect to M. This
implies among other things that either the population is an infinite one,
which will be the case if it is continuously distributed, or sampling is
with replacement.

(3) The X;'s must have been randomly
selected from their respective populations.

d. Treatment of Observations Falling on th iz
Median. See 2. Treatment is analogous.

e. Efficiency. See 2. Efficiencies quoted under 2 apply with
equal validity to the test for the median.

f. _Application. Count the number, r, of X's which are
smaller than M. If a small proportion of the X's equal M, count
half of them as smaller than M., If there are an odd number of such
tied X's, discard one of them and reduce n by 1. For a two-tailed
test at the level a, reject the null hypothesis if

Za (D) 1/27 < a/2 or > 1 - a/2. If the alternative hypothesis for a
one-tailed test is that the population median exceeds M, reject the
null hypothesis if 1};5 (Ii]) 1" < a. For the opposite
one-tailed alternative hypothesis, reject if the summation >1- a.

g. Tables. See 2 and the paragraph below.

h. Discussion. If the X's are arranged in order of increasing
magnitude with subscripts indicating rank in that order (1= smallest,
n=largest), then if r observations are below M, M exceeds the value
Xr’ i.e., M>Xr- Therefore, rejecting the null hypothesis because r
observations have fallen below the median is equivalent to rejecting
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it because the median exceeds X .. Walsh (43) has prepared tables

of probabilities for the Sign test ?or the median which call for this
approach.

If the X's all come from the same continuously distributed
population whose mean equals its median (which will be the case if
the population is symmetrically distributed), the Sign test for the
median is equivalent to & test for the mean. In other words at
the cost of introducing two new assumptions, homogeneous popula-
tions and symmetrical distribution, the Sign test for the median be-
comes a Sign test for the mean. By adding (or subtracting) a con-
stant C to every X before applying the test, the hypothesis can be
tested that the population mean has '"slipped' a distance C below (or
above) a value it is known to have had at some earlier period.

i, Sources, See 2,

4, Cox and Stuart!s S2 Sign Test for Trend in Location

a. Rationale. Suppose that 2n measurements have been record-
ed or are available in an order of sequence and it is desired to test whe-
ther the sequence may contain a monotonic, i.e., nonreversing, trend.

If there is no trend of any kind, i.e., if sequential position has no effect
upon measurement magnitudes, these magnitudes will be randomly dis-
tributed in sequence. If measurements are divided into independent pairs
and if in each pair the measurement later in sequence is subtracted from
the earlier measurement, the sign of each difference will be as likely

to be plus as to be minus. If zero differences are impossible, the num-
ber of differences of one sign will be binomially distributed. On the
other hand, if a unidirectional trend exists differences of one sign will
tend to predominate.

b. Null Hypothesis. Let subscripts represent the position of
a given measurement in the sequence of 2n measurements. The null
hypothesis, then, is that for every

i i = < = 2
X, withi < n the P_ (x, > xi+n) EL, (X, X, o )

Sufficient conditions for its validity are that the X!'s are continuously

distributed and are randomly related to sequence, i.e., contain no
trend.
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c. Assumptions. (1) Pr (X'=Xi+n) =0 for every i<n,
i.e., the members of no pair are tied.

(2) Whether a given Xi falls above or below

Xi+n is independent of the outcome for any other pair.

(3) The X's are randomly selected.

d. Treatment of Ties. The authors recommend counting
half the zero differences as plusses, half as minuses. Also see 2,.

e. Efficiency Applied to populations known to be normally
distributed, the SZ test for trend in location has asymptotic relative
efficiency . 78 with respect to the best parametric test, based on the
regression coefficient (37). Under the same conditions, it has
A, R, E, .79 compared to Spearman'!s or Kendall's rank correlation

tests used as tests of randomness (5). For other comparisons, see
Table I.

f. Application. If the total number of measurements is not
an even number, drop the middle measurement to make it so. Let
2n stand for the number of measurements remaining. From each X,
in the first half of the sequence, subtract the corresponding measure-
. ment Xi+n in the second half. If a small proportion of the differences
are zero, assign half of them a plus, half a minus. If an odd zero
remains, discard it and reduce n by 1. Let r be the number of posi-
tive differences. Then for a two-tailed test at significance level a

reject the null hypothesis if ’E; (2) 1/2n either equals or is less

than a/2 or equals or exceeds 1-a/2. For a one-tailed test at the level a
: oy (2 r n n g

reject the null hypothesis if _Z, () 1/2" < a if alternative hypo-

thesis is an upward trend (or >1-aif alternative hypothesis is a down-
ward trend).

g. Tables. See 2.

h, Sources. (5, 11)
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5. Cox and Stuart!s S3 Sign Test for Trend in Location

a. Rationale. See 4, substituting "3n'" for '""2n".

b. Null Hypothesis. Let subscripts represent the position of
a given measurement in the sequence of 3n measurements. The null
hypothesis, then, is that for every

X, withi < n the P_ x, > xi+2n) =P (X, <X, )= 1/2

Sufficient conditions for its validity are that the X's are continuously
distributed and are randomly related to sequence, i.e., contain no trend.

2 : S T 1" 1" 1"
c. Assumptions. See 4, substituting Xi+2n for Xi+n .

d. Treatment of Ties. See 4,

e. Efficiency. Applied to populations known to be normally
distributed, the S, test for trend in location has A, R. E. .83 with
respect to the best parametric test, based on the regression coeffi-
cient (37). Under the same conditions, it has A, R. E, .84 compared
to Spearman's or Kendall's rank correlation tests used as tests of
randomness (5). For other comparisons see Table I.

f. Application. If the total number of measurements is not
divisible by 3, "add' one or two 'dummy' measurements in the middle
of the sequence to make it so. Let 3n stand for the number of meas-
urements as modified. From each Xi in the first third of the sequence,
subtract the corresponding measurement X;,5  in the last third. The
data in the middle third will not be used. If a small proportion of the
differences are zero, assign half of them a plus, half a minus. If an
odd zero remains, discard it and reduce n by 1. Let r be the number
of positive differences. Then for a two-tailed test at significance

; b 3 r ;

level a, reject the null hypothesis if xz=)0 (2) 1/Zn either equals or

is less than a/2 or equals or exceeds l-a/2. For a one-tailed test

at level a, reject the null hypothesis if x);g (i) I/Zn < q if alterna-
tive hypothesis is an upward trend (or > l.a if alternative hypothesis is

a downward trend).
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g. Tables. See 2.

h. Discussion. The S; test uses only 2/3 of the raw data
employed by the S, test; however, the members of each pair of meas-
urements whose difference is taken are 1/3 farther apart. The net
result is an increase in efficiency. If a real trend exists, then the
farther removed two measurements are in sequence, the greater the
expected difference in magnitudes and the more likely that the sign of
the difference will betray the direction of the trend. The SZ test,
however, has one advantage. Since it uses all of the data, statistical
inference can be extended to the entire parent population. Strictly
speaking, inferences based on the S, test cannot legitimately be
extended to the middle third of the sampled sequence, since a temporary
trend occupying only this portion could not be detected.

i. Sources. 5, 11, 37.

6. Cox and Stuart's S; Sign Test for Trend in Dispersion

a. Rationale. Suppose that 3kn measurements have been re-
corded in order of sequence and it is desired to test whether the disper-
sion of the measurements about a linear regression line changes mono-
tonically with position of measurements in the sequence. If the true
dispersion remains constant, then the ranges of consecutive sets of k
measurements should vary on a chance basis only. And if the range
of a subsequent set is subtracted from that of an earlier set, the dif-
ference is as likely to be positive as to be negative. If zero differences
are impossible, the number of differences of one sign will be binomially
distributed. On the other hand, if dispersion changes monotonically
with position in sequence, differences of one sign will tend to predom-
inate.

b. Null Hypothesis. Let w; represent the range of the i th
consecutive set of k measurements. The null hypothesis, then, is

- 1 3 > = < O = .
that for every w; with i< n the Pr (Wi Wi+2n) Pr (Wi W1+2n) /2

Sufficient conditions for its validity are that the X's are continuously
distributed with constant dispersion about a linear regression line.

c. Assumptions. (1) Pr (wi = Wi+2n) =0 for everyi<nm,
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i.e., the members of no pair are tied. If the X's are continuously
distributed, the w's will be also and the assumption will be satisfied.

(2) Whether a given Wy falls above or below
w. is unaffected by the outcome for any other such pair.
i+2n

(3) The X's are randomly selected.

d. Treatment of Ties. See 4.

e. Efficiency. Applied to populations known to be normally
distributed, the S, test for dispersion has A,R.E, of .71 compared to
the maximum like:iihood test (5).

f. Application. The selection of the integer k is arbitrary and
will not affect the validity of the test; however, it can be expected to
affect the test's power. Letting N stand for the total number of meas-
urements, the following rule is suggested by the authors:

take k = 2 if N <48, takeR = 3 if 48 <N <64, take k = 4 if 64 < N <90,
take k = 5 if N > 90. Let n be the integral part of N/3k and drop N-3kn

measurements from the middle of the sequence. Divide the 3kn remain-
ing measurements into 3n consecutive sets of k measurements each.
Find the range of measurements within each of the 3n sets. Finally,
using these ranges as scores or measurements, proceed exactly as in

the S3 test for trend in location.

g. Tables. See 2.
h, Discussion. This test can be made a test for trend in

variance, (or standard deviation) simply by substituting this term for
"range'" and applying the test as outlined above.

The authors do not suggest the use of the Sy test to test for dis-
persion, although it obviously could be legitimately used for that purpose.

i. Sources, 5, 1l.

7. Noether!s Sequential Test for Linear Trend

Cox and Stuart's tests for trend in location give specific values
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to a constant, C, in a more general test discussed by Noether (23, 24).
The latter author, in effect, sets the null hypothesis that

Pr (Xi > Xi-l-C) = Pr(xi < Xi = 1/2 and examines the optimum value

+c)

of C for a sequential probability ratio test of that hypothesis.

8. Noether'!s Binomial Test for Cyclical Trend

a. Rationale. Suppose that 3n measurements have been re-
corded or are available in order of sequence and it is desired to know
whether the sequence may contain a fluctuating or cyclical trend. If
the measurements are continuously distributed and there is no trend
of any kind, no two measurements will be equal, and the measurements
will be randomly related to sequence. Any three consecutive meas-
urements will be equally likely to have any of the six sequences repre-
sented by the six possible permutations of three things. However, of
these six sequences only two are monotonic, i.e., ascend or descend
without reversals, while the remaining four change direction in the
middle. For example, if the three measurements are ranked, the
ranks will be found to have one of the six sequences: 123, 3 2 1,
132,231, 213, 312, the underlined sequences being mono-
tonic. The probability of monotonicity for such a set of three meas-
urements is therefore 1/3 if the sequence is random and the meas-
urements are continuously distributed. And if the 3n measurements
are divided into n independent sets of 3 consecutive measurements
each, the number of monotonic sets will be binomially distributed
withp=1/3. On the other hand, if a cyclical or fluctuating trend of
any but the shortest possible ""wave length'" exists, one would expect
more than 1/3 of the sets to be monotonic.

b. Null Hypothesis. For every

<
> Xy TP Xy <X

i<n, the P (X4 > Xy

< = 5
3i-1 X3i-2) 1/3
Sufficient conditions for its validity are that the X's are continuously
distributed and the size of the X's is unrelated to their position in
sequence.

c. Assumptions. (1) Pr (X3i=x3i+1)=0 and Pr (X3i+1=x3i+2)=0
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for every i <n,i.e., adjacent scores in no set are tied.

(2) Whether or not any given set is mono- .
tonic is independent of the monotonicity or nonmonotonicity of any other

set. Among other things, this means that no X is used in more than

one set.

(3) The X's are randomly drawn.,

d. Treatment of Ties. Ties are a practical problem only
when the tied scores are members of the same set. If the first and
third scores are tied and the second is not, the set is clearly non-
monotonic and there is no ambiguity. If adjacent members of a set
are tied, the set is as likely as not to be monotonic; therefore, half
of such sets should be counted as monotonic, half as nonmonotonic
(the odd set, when it exists, being discarded and n reduced by 1).
If all three members of a set are tied, the chance probability of
monotonicity is obviously 1/3, and one third of such sets should be
counted as monotonic (one or two sets being dis¢arded and n reduced
accordingly if the number of such sets is not divisible by 3).

e. Efficiency. Noether states that he does not believe the
test to be highly efficient.

f. Application. If the total number of measurements is not .
divisible by 3, drop one or two measurements from the middle of the
sequence to make it so. Let 3n stand for the number of measure-

ments remaining. Divide these 3n measurements into n independent,
i.e. nonoverlapping, sets of 3 consecutive measurements. Count

the number of monotonic sets, treating tied members of a set as out-
lined above. Call this number r and call the total number of sets
used n. Then for a one-tailed test at significance levela reject the

null hypothesis if x@_:: (2) (1/3)° (2/3)"7* < a. This tests H,

against the one-sided alternative that once a direction is taken it
tends to persevere for a longer than chance period. A two-sided

test would include the alternative that direction fluctuates more rapid-
ly than would be expected by chance. However, such a contingency
seems unlikely to be of great practical interest, since such a fluctua-
tion in this case would very nearly amount to alternation of direction,
i.e., change with every measurement.
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g. Tables. 34, 25, 28.

h. Discussion. This test is also presented by its author as
a sequential probability ratio test.

Lehmann (17, 38) has briefly proposed a test of the hypothesis
that two populations are identical, which is analogous to Noether!'s test.
If 2n scores have been drawn from an X population, and 2n from a Y
population, and if X's are paired at random with one another and then
with a pair of likewise paired Y's, there will result n independent
quadruples consisting of two X!'s and two Y's. If the null hypothesis
is true, and the X's and Y's are continuously distributed, the chance
probability that in a given quadruple both X's will either be greater
than or less than both Y'!'s is 1/3. The number of quadruples for which
this is the case will therefore be binomially distributed with p = 1/3 and
can be used to test the hypothesis of identical populations. The test is
consistent if the sampled populations are continuous, ties are random-
ized and the alternative hypothesis is that p# 1/3.

i. Sources, 24.

9. Mosteller!s Test of Predicted Order

a. Rationale, Suppose that n individuals each are to be tested
under k conditions and the experimenter has reason to believe that he
can predict the order of excellence of performance under the k conditions.
If "performance" is continuously distributed so that no two conditions
will result in the same score, then for any one individual there are
k! orders in which the k conditions could be arranged. If performance
is independent of the conditions under which it is tested, then each of
the k! orders is equally likely with probability 1/k!. If performance
is truly unrelated to differences among tested conditions, then the num-
ber of individuals whose order of performance has been correctly pre-
dicted is binomially distributed with p = 1/k! . On the other hand,
if performance is related to conditions and if the experimenter has

correctly predicted the relationship, the predicted order will tend to
exceed its chance expectation.

b. Null Hypothesis. Pr (Order Predicted by Experimenter)
= 1/k!. Sufficient conditions for its validity are that measurements
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are continuously distributed and unrelated.to the specific experimental
conditions under which they occur.

c. Assumptions. (1) None of the performance scores for a
single individual can be tied.

(2) The order of performance excellence
for any given individual is unaffected by that of any other individual.

(3) Individuals and individual's scores
are randomly selected.

d. Treatment of Ties. Ties are no practical problem unless
one of the possible ways of 'breaking'' the ties results in the predicted
order. In those cases, for every group of t tied scores, there will
be t! ways of breaking the ties, and ifthere is more than one such group
for a single individual, the number of ways of breaking the ties will be
the product of these factorials. Therefore, for each individual whose
order of performance contains ties and could be the predicted order
if the ties are broken properly, find the number of ways in which ties
could be broken. Sum these over all such individuals, and call the
total '"D''. Let N stand for the number of such individuals. Then
N/D is the proportion of these individuals whose order should be re-
garded as the predicted one, and (N/D) N or N2 /D individuals should
be counted as having the predicted order. Simpler techniques, which
err in the direction of conservatism, are to regard the N individuals
as not having the predicted order, or to discard the N individuals and
reduce n by N,

e. Efficiency. Apparently unknown.

f. Application. Treating ties by one of the techniques outlined
above, count the number of individuals whose performance under the k
conditions conforms exactly to the predicted pattern, i.e., whose per-
formance excellence under each condition has the rank predicted for
performance under that condition. Let this number be r and the total
number of individuals tested be n. Since a smaller than chance num-
ber of individuals having the predicted order is unlikely to be of interest
to the experimenter, only a one-tailed test of the opposite situation will
be outlined. For a one-tailed test at the level a, reject the null hypo-
thesis in favor of the alternative that the predicted order has a greater
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than ''chance' probability if izz;? (ril) (1/k1)r (1- 1/k3 )n-r < a.
’ g. Tables. 34, 25, 28.

h. Discussion. It is very important to remember that this
test tests only that if the k conditions affect performance differen-
tially the experimenter has done a better than chance job of predict-
ing the pattern. Suppose that of 15 conditions 10 affect performance
in the same way and are therefore equivalent, while the remaining 5
conditions affect performance differentially. If the experimenter cor-
rectly assigns one of the ranks from 1 to 15 to each of the five differ-
entiating conditions, the predicted rank order will occur more fre-
quently than 1/15' of the time and the null hypothesis will tend to be
rejected more than q of the time. However, the predicted rank
order will not be correct for the 10 equivalent conditions since it
will imply that they differ, which they do not. Suppose again that
five conditions arranged in order of "excellence'" are A BCDE
and that the experimenter has predicted the order ABC ED. I
the conditions differ greatly relative to performance variability, the
experimenter's predicted order may be expected to occur less than
1/5! of the time; while, if performance variability is large relative
to the true differences among conditions, the experimenter's predicted
order may be expected to occur more than 1/5' of the time and the null

. hypothesis will tend to be rejected more than a of the time. The temp-
tation to accept the predicted order as the correct one, when the null
hypothesis is rejected, should therefore be resisted.

i. Sources. 34 (Introduction, pp. xxxvi-xxxvii).

10. Confidence Limits for Quantiles

a. Rationale. Assume that a random sample of n independent
observations has been taken from an unknown but continuously distributed
population, and that it is desired to establish confidence limits for the
magnitude of a population quantile, Q. This quantile may be a percen-
tile, quartile, median, or, more generally, that population magnitude
below which some specified proportion p of the population lies.

Let the n sample observations be arranged in order of increas-
ing magnitude with subscripts indicating rank position in that order, i.e.,
from smallest to largest the observations are X,, XZ’ X3, veeey Xr’

...... » Xgo vvees X oy X 1» X . Also, let € be aninfinitesimally
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small positive magnitude. If Q lies at or below X, + ¢ then r or
fewer sample observations have fallen below the population quantile

Q, the chance probability for which is 123:; (Iil) p' (1-p)*7', where

P is the proportion of units in the population whose magnitude is less
than Q. Likewise, if Q lies at or above Xs - € thenn - 8 +1 or fewer
sample observations exceed Q, or equivalently, s - 1 or more obser-
vations are smaller than Q. The chance probability for this is

n n, i n-i
1§S-1(1)p (l’p) .

With qualifications which will be outlined under '"Assumptions",
these two probabilities may be regarded as the probabilities that Q lies
below X. + € and that Q lies above X5 - € respectively. If s is larger
than r, the events referred to by these two probabilities are mutually
exclusive (since € is an infinitesimal)., Therefore the nrobability
that Q is neither below X,. + € nor above Xg - € is

r n, i n-i n n, 1 n-i s-2 ,n, i n-i

and this is equivalently the probability that Q lies between X. + €
and X -€ Since € is an infinitesimal, it is also the probability that
X <Q<X.,.

r s
E b. Assumptions., Random sampling and independent obser -
vations are assumed for reasons given in (1), The assumption of
continuous distribution is required in order to rule out tied observa-
tions. Actually, ties become a practical problem only when they
occur at the critical end points of the confidence region, i.e., when
X, is tied with X, ) or X with X__;. Such ties render the end points
of the confidence region indistinct and impose an additional (see next
assumption) element of inexactitude upon the calculated confidence
level, If X. and X_.,; are tied, for example, then X,. + € cannot be
greater than X, and equal to or less than X ., as required by the deri-
vation. The tied observations X and X, represent a third category
of outcomes, e.g., on rather than above or below the median, thus
rendering the binomial an inappropriate mathematical model. The
assumption of a continuous distribution is also required because it
implies an infinite population. If the population is infinite, the prob-
ability of an observation smaller than Q is p for every observation;
if the population is finite, the probability for every observation after
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the first depends upon the outcomes of the previous drawings. The
final assumption is incompatible with the immediately previous one.
It is that there is zero probability that the population quantile Q lies
between X .. and X _,, or between X _; and X_ . The probability

. -2 ,n, i n-ij
that Xr <Q< XS was derived to be i=¥+1 (i) p (1 - p) ;
however, this is precisely the same probability which would have been

obtained for the event Xr 1 <Q ixs-l' But this implies that

+

= < < = 1
Pr (xr <Q< xr+1) 0 and that Pr (XS__1 Q Xs) 0 which offends

commnon sense. Phrased differently, the derivation given under
""Rationale'' took € to be an infinitessimal, but would have led to the
same results if € had been any positive value such that

Xr ¥ € <Xr+1 and Xs_l <Xg- e Again, this obviously implies the
untenable assumption that Q cannot occupy the region between X, and
X;:41 or between X _; and Xg. The reason for the discrepancy is
simply that ''r observations below Q' and '"r+1 observations below Q"
are two "adjacent'" eventualities in a discrete distribution of "number
of sample observations below the population quantile Q"., Since this
is a discrete distribution of frequencies, there is no event 'in between"

the two named. However, ''population quantile is X_' and 'population
quantile is X ;' are nonadjacent eventualities in a continuous distri-
bution of magnitudes assignable to the population quantile. An error

has therefore been introduced by using a discrete distribution, i.e.
the binomial, to express probabilities for a continuously distributed
variable. In terms of confidence limits, the error is no larger than

the difference between the confidence limits Xr <Q <XS and X <Q§Xs

r+l-— -1°

c. Treatment of Ties. If either X, and X_,; or Xs_1 and
X are tied, it is suggested that the confidence region be changed
(i. e. shifted, expanded or contracted) so as to have untied endpoints.
The conservative, i.e. safest, approach would be to reduce r or enlarge
8 to the extent necessary to include within the confidence region all ob-
servations which had been tied with the endpoints. The confidence
level will, of course, have to be recalculated for the new confidence
region determined by the reassigned values of r and s,
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d. Application. Let Q be the unknown magnitude of the popula-
tion score below which a specified proportion p of the population scores ‘
lie, Draw n sample observations from this population and rank these
.observations from smallest (1) to largest (n). Ties should be dealt with

as outlined in the preceding paragraph. Take 1@:;? (ril) p' (1-p)°7"

to be the confidence level for the hypothesis that Q lies in one of the
following confidence regions. If the most conservative probability
statement is desired, take Xr <Q< X, as the confidence region.

However, if greatest accuracy is desired in the sense of minimizing

Xr-*-Xr-l-l Xs- 1+Xs
the error, take the confidence region to be — < Q< s
The former will usually be the more conscionable procedure. The

values p, r, and s must, of course, be selected prior to sampling.

L4

e. Tables. 34, 25, 28, See also 19, I-8 p. 360,

f. Discussion. The a priori probability that the magnitude

of the rlCh ranked observation will be less than Q is not the exact

probability that the magnitude obtained for the rlCh ranked observation
will be less than Q. Even in the obtained sample, Xr could be assigned ‘

any magnitude between Xr_ 1 and Xr+1, and still be the rth observation
in order of magnitude. The range of magnitudes "represented" by Xr’
X, TR X X

r " of T

then, might be considered to be ol to +1 , l.e,, the

Z

point halfway between Xr and the next lower magnitude to the halfway

point to the next higher magnitude. Then if the rank of r represents

X +Xr+1 ' r n, 1 n-i
magnitudes as high as , the summation f‘::O (i)p (1-p)
Xr-‘_Xr-l-l
would give the probability that Q lies below = rather than

below Xr' Obviously, then, the probability that Q is less than or equal
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to Xr is no greater than 1@8 (?) p1 (l-p)n-l. Therefore, we can be con-

fident at least at the level z ol ( By S -pP* 2 st X_<Q<X_. By

introducing an inequality then we can make a definitive probability
statement which takes account of the error discussed under the last

"assumption'. It is that P (X <Q<X ) —r+1 ( )p (1- p) . Also,

if instead of the most conservative probability statement, we wish to make

X X X -l-Xs

the most nearly accurate one, we can take rtl < Q<

as the most probably '"true'" confidence interval corresponding to the

confidence level .E 1 ( )p (1- p)

If Q is taken to be the population median, the confidence level

becomes simply Er+1 ) 12

It is important to note that the '"error' implicit in this method
appears only when setting confidence limits for the unknown magnitude
of a specified quantile, Q. If the magnitude of Q is hypothesized to be
a single specified value, Q', then an exact test of the hypothesis
Q = Q' can be made by rejecting if Q' lies outside of the confidence
limits Xr < Q< Xs.

The methods just discussed establish confidence limits for
the unknown magnitude or score below which a fixed proportion of the
population lies, Binomial methods have also been suggested (3, 6, 31)
by which to obtain confidence limits for an unknown population propor-
tion on the basis of the proportion of an obtained sample corresponding
to a specified category. These methods, however, appear to be cumber-
some, inexact, or both,

g. Sources, 19, 32, 40, (See also 3, 6, 9, 21, 22, 31, 33,
and I-8 pp. 320-323, 360.)
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CHAPTER III

THE MULTINOMIAL DISTRIBUTION

The multinomial distribution is important in a study of distribution-
free tests because it plays a role in the derivation of a number of exact
tests. It is also the exact distribution appropriate to, but too compli-
cated for, the type of test situation in which the chi square statistic
is commonly used. Chi square is in fact derived from the multino-
mial by means of a series of approximations, tantamount to assump-
tions, which render chi square inexact when sample size is not in-
finite, and which necessitate considerable skill in applying it properly.
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1. Derivation and Assumptions

a. Derivation. Let an event have k possible outcomes, designated
by subscripts 1, 2, ..., k, and let these outcomes be mutually exclusive
and independent and have probabilities pl, Pys oovs pk such that

iz-;l p.= 1. If the event is allowed to occur n times, the probability
N

that the respective frequencies of occurrence of the various outcomes
will be exactly nl, n'z, . oy M s

k n
' p.i
L leli pI;z Srahe pik, or n! _11( -;'— . Proof: The probability
nll nz.' nk! e B

that the outcomes will occur exactly Ny Doy eee, D times respectively

and in a completely specified order (for example, the order in which

the first n, outcomes are those whose probability is Py the next n,,
cqs . s n ny n :

those whose probability is Py etc.) is pll Py eee pkk . To obtain

the probability for these frequencies, but in any order, the preceding

product must be multiplied by the number of distinguishable orders.

The n outcomes can be permuted in n! ways. But in any one of these

permutations, there are n, outcomes of the first category which are

the same and which can be permuted among themselves in nll ways

without changing the appearance of the order. And for each of these

nl.' permutations, the outcomes of the second category can be permuted

with one another in n,! ways without changing the appearance of the ori-
ginal order, etc. There are thus nll nzl oo nk! ways in which each
distinguishable order pattern can be permuted without creating a pattern
distinguishable from it. Since n! is the number of distinguishable pat-

terns times nl.' nzl s nk! , the number of distinguishable patterns of

1
order is = and the probability that in n trials the k cate-
nl.' Nyt e nk!

gories of outcomes will occur Ny Doy eee Iy times respectively is

n, n n
p,! pzz .o+ PLk-

b. Assumptions, Since, in the derivation , the same value, p.
was taken as the probability for outcome i in each of its n, occurrences,
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p; must not vary from event to event. The outcome of a given event
must therefore be independent of the outcomes of any of the n-1 other
events, Not only must the probabilities of the various possible out-
comes of an immmediate event be independent of the actual, observed,
outcomes of the previous events, they must also be mutually exclusive.
This assumption is necessitated by the fact that the probability of a
given set of n outcomes was obtained in the derivation by taking the
product of the n individual outcome probabilities; to obtain compound
probability in this fashion, the individual probabilities must be mutually
exclusive. (See Mood I, 30-36). Another assumption is that

'
.Zk H =N, Unless this is the case, e does not
i=]l i Bat B woe B
Lt 2 k
give the number of distinguishable orders of obtained outcomes as re-
quired in the derivation, and, in fact becomes meaningless. Since

k mutually exclusive outcomes are recognized as possible,
k

k
iEI p;, must equal 1. Otherwise a real probability, 1 '151 P;s

would exist for outcomes in an additional category or categories not
considered. (Furthermore, the occurrence of such uncategorized

k
outcomes would mean that n would be greater than iz"l ni') Finally,

since P» P» etc. are chance probabilities, sampling must be random,

i.e., the n events or trials must be selected on a chance basis from

the infinite number of potential events available. Specifically this means,
among other things, that no bias shall have operated to exclude valid but
"unfavorable' data from the test.

Use of the multinomial distribution in statistical tests requires
that the probabilities for all of the possible outcomes be known exactly

n,
o |
and be included in the formula n!ig1 —il-.,— It is important, however, to
i
recognize that the experimenter is free to define both the sample space
in which he is interested and the categories which divide that sample
space into k mutually exclusive parts. The experimenter must, in
fact, be careful to do this in such a way as to define precisely that situa-
tion in which he is interested. If he fails he will obtain an exact prob-
ability for a situation in which he is not interested, and this probability
will differ, perhaps considerably, from the exact probability for the
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situation in which his interest lies. For example, in coin tossing,

in addition to "heads'' and ''tails'", the outcome category '‘on the rim"
has finite probability which usually cannot be specified. Therefore,
although heads and tails have equal probabilities, these probabilities
are unknown since their sum is notl. By defining his sample space
as that including only those outcome categories in which the coin lands
flat, the experimenter enables himself to specify as .50 the probability
of heads and the probability of tails. The experimenter is no better
off, however, unless his interest is confined to the sample space con-
sisting only of heads and tails, i.e., is confined to the frequency of
heads relative to tails rather than tosses, Again, the experimenter
may be interested in broader categories than those into which his data
are fitted. In such cases he should use the categories in which he is
interested rather than those in which the data are available., For ex-
ample, in tossing two coins simultaneously the possible outcomes will
be defined to be two heads (Pr: 1/4), a head and a tail (P 1/2), and
two tails (Pr= 1/4). Suppose that the two coins have been simultan-
eously tossed n times and that the frequencies of the respective out-
comes named above are np, n, and nj. If the experimenter is inter-
ested in the point probability of the obtained frequencies for the outcomes
n!

T 1 1
nl. n2. n3.
the other hand, if he is interested in the probability of the obtained

frequencies for the recategorized outcomes, ''coins have same side
up" (P_= 1/2) and "coins have different sides up" (2= 1/2), the ob-

stated, the proper formula is (1/4)nl tns (1/2)nz. On

tained frequencies are n1+n3 and n, respectively and the probability

1
is T +r?')fn2, (1/2)n1+n3 (1/2)nz. The probabilities for the same
1 3 L 2 L]

data under the two different categorizations of outcome are not the
same:

n n

; ; = (1/9™ ¥ (1/2)%2 9 (n1+n3‘;f = (1/2)"1¥73 (1/2)%
T hT .

— .].n : (1/4)n1+n3

1
? (1/2)
1 3 = (n1+n3;.' /

ny +ns

(B

1 ny +n3 1
n L] n L] (1/2)

3 Oy = o #05)

1~
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(

1
(n1+n3)' 2 2T +n;3
By D =
1° 73
n1+n3)?_ ,my +n3
n, )=
. ' N N
Substituting N for n1+n3, the questioned equality becomes (n ) 2 2
1
which is obviously absurd since (1;1) varies with the particular values
1
of n, and Ngs while ZN does not, varying only with their sum. The

reason for the discrepancy between the two probabilities is that one

states merely that n, +n; tosses result in either two heads or two tails

without specifying precisely how many of these shall be two hea@s;-the
other probability does specify this further and much more restrictive
information. The latter probability is, therefore, much smaller than
the former.

The multinomial distribution is seldom used directly as the
basis of a statistical test, This is partly attributable to the fact that
the exact probabilities for the various outcome categories, although re-
quired by the test, are seldom known; and it is partly because, unless
n is quite small, computation of cumulative probabilities, i.e., signi-
ficance levels, is likely to be extremely time consuming. Nor is this
distribution extensively tabled except for the special case where k=2,
i.e., except far the case of the binomial distribution. The reason for
the lack of extensive tables is obvious: the number, 2k - 1, of required
parameters is prohibitively large.

2, The Chi Square Approximation to the Multinomial

Because chi-square occupies a prominent position in most
elementary statistical texts it will be assumed that the details of its
application are familiar to the reader. Because it is one of the most
misunderstood and misused of statistical tests, its theory and the hazards
of its misapplication will be discussed in detail,

The chi-square distribution is derived from the multinomial,
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three approximations being required in the derivation and therefore
qualifying the use of chi-square, The first approximation consists
in replacing the factorials in the multinomial

T le11 pIZ12 coo pik by their Stirling approximations.

The second approximation 'is similar in character to the familiar

one by which an expression of the form (l+x/m)rn is replaced by e™
when m is large'" (27). The final approximation consists in replacing
by an integral the discrete summation representing the cumulative
distribution function,

Each of these three approximations presupposes infinite,
i.e. very large, n's and becomes increasingly poor with diminishing
sample size. KEach is strictly valid only for samples of infinite size.

The first two approximations together are equivalent to sub-
stituting for the multinomial distribution its multivariate normal
approximation. At this point the assumption is necessitated that, for
each category, the observed frequencies are normally distributed
about the expected frequency as a mean., For a single multinomial
category, outcomes are binomially distd buted; therefore replacing
the multinomial distribution by its multivariate normal approximation
is equivalent to substituting the univariate normal distribution for the
true binomial distribution of outcomes within each multinomial cate-
gory. In fact, the working formula by which data are referred to the
chi square tables can, for the case of one degree of freedom, be easily
derived by making this substitution. Consider a binomial variate
with the probability p for a single event. The point probability that

| -
it will occur r times in n trials is T,—z%)-, pr (l-p)n r, or, if the

normal approximation is used, the corresponding cumulative prob-
r-np
N np(1-p)

mean and N np(1-p) the standard deviation of the binomial distribution.
If both sides of the equation are squared and numerator and denomin-
ator of the right side are multiplied by n, it becomes

ability is that of the '"normal" deviate ¥ = , np being the

2
XZ o) N Now substitute {  for r and f_ for np, giving
1

np{n-np) €1
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f - f - -
2 n O el) (fol fel) (fol fel)

X =~F @1 )y = 7 et

(531 e) el (S5

2 2
(fol —fel ) (n-f . _n+fe1 )
= f & n-f ¢
€) €1

If now f is substituted for n-f and { for n-f ,
€2 e 02

1 01
(£ -f ) (£ -1 )°
2 01 e) O2 €2
% = i + 7 which is the formula used to cal-
€l €2

2 .
culate ¥ with one degree of freedom from data in which f0 and fe
1 1

are the observed and expected frequencies of occurrence and f and
oF]

fez are the corresponding frequencies of nonoccurrence. (It is easily

seen from the foregoing that chi is normally distributed when chi
square is based on a single degree of freedom.,)

The assumption that observed frequencies are normally
dis tributed about their expected frequency is, of course, incapable
of being met exactly unless n is infinite at which point the binomial
distribution and its asymptotic normal "approximation' are identical,
The normality assumption is therefore equivalent to the ""assumption'
that n is infinite, or, since the expected frequency, f , equals np.,
that all expected frequencies are infinite, e .
In more practical terms,
the "assumption' of normal distribution of observed frequencies will
be negligibly violated if the following conditions exist: (a) n is so
large that for every p. # .50, the true, i.e. binomial, distribution
of observed frequencies within each category has no more than neg-
ligible asymmetry; this must be the case if the binomial is to be
well approximated by the 'fitted' normal distribution which is sym-
metrical, (b) n is so large that for each category the area of the
"fitted" normal curve covering impossible "observed'" frequencies,
i.e., those frequencies which are less than zero or greater than n,
is negligible relative to the size a of the significance level being
used for the chi square test, (c) n is so large that if for each cate-
gory the points corresponding to observed frequencies in the binomial
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distribution of observed frequencies were connected by line segments,
the result would have the appearance of a smoothly continuous curve.
The smaller the smallest p;is, the larger n must be to produce the
effects named; and the smaller the significance level chosen for the
chi square test, the greater the relative importance of asymmetry,
the alleged probability of impossible frequencies, and discontinuity,
and therefore the larger n must be to make these effects negligible.
The term ''megligible' has not been, and will not be defined. Any
subjective definition will suffice if consistently applied, since, in the
above discussion, that degree of cause which is defined as negligible
will have an effect whose degree is of about the same order of negli-
gibility.,

Much acrimonious controversy has raged over the question of
how small an expected frequency can be safely used in a chi-square
test. The reason for the animosity is not hard to find. Since for any
expected frequency short of infinity, chi square is an approximation
rather than an exact test, the question of how small an expected fre-
quency can be tolerated resolves itself into a pure matter of opinion
as to how close an approximation is '"good'". And most writers have
not quantified the degree of approximation which they find tolerable
other than by specifying a minimum acceptable expected frequency.

The most popular rule of thumb appears to be that '"no expected fre-
quency should be less than 5", possibly because the normal approxi-
mation to the binomial is regarded as good if np exceeds 5, However,
such rules overlook the fact that the effect of an assumption violation

is usually a function of several factors only one of which, i.e expected
frequency, is mentioned in the rule. For example, there is every rea-
son to believe a priori that (a) the variance and degree of symmetry of
the sampling distribution of observed frequencies, (b) the "height'' of
the significance level chosen, and (c) the number of categories, will be
important factors in determining whether or not the use of an expected
frequency as low as 5 will have an appreciable effect upon the closeness
of approximation of the chi square significance level to the '"true' multi-
nomial significance level. The smaller the variance of the true sampling
distribution of observed frequencies the smaller will be the area of the
normal distribution, assumed for them, which occupies the region cor-
responding to negative, and therefore impossible, frequencies., And
the more nearly symmetrical the sampling distribution of observed fre-
quencies (i, e., the closer p is to .50 for a given n), the better it will
be approximated by the normal distribution it is "assumed' to have.
Curve '"fits'" are usually poorest at their tails, therefore the distortion

64



of the chi-square approximation should be greater the higher the sig-
nificance level. Finally, since chi-square is the sum of squared
deviations divided by the respective expected frequencies, the effect
of a single very small expected frequency in a large number of cate-
gories would exert a smaller relative influence upon the sum, and
therefore chi-square, than would be the case if a smaller number of
categories were being used. Tables III and IV show the distorting
effect of some of these factors upon chi square probabilities when the
expected frequency is 5 and 2 respectively. For other studies of the
sensitivity of chi square to gross violations of its assumptions, see

(9, 36, 56, 59, 66),

The prohibition against small expected frequencies has led to
the widely accepted practice of pooling categories in order to bring the
expected frequencies for the combined categories up to the required size.
Such pooling, however, involves an arbitrary decision which must usually
be made subsequent to the collection of data, Such a posteriori mani-
pulation of test parameters, i.e. categories, in effect violates the
assumption of random sampling since outcomes are being influenced by
a factor other than chance., This objection is not an academic one,
since the manner in which categories are combined can dramatically
affect the significance levels obtained for a given set of data. ¥ Gambel
(29) gives an example of a goodness of fit test in which probability
levels calculated by chi-square from the same data, using the same ab-
scissa interval length to define categories (and of course the same num-
ber of categories in each case), vary by a factor of 30 depending on the
point chosen for the beginning of the first interval. When dealing with
contingency tables the expected frequencies are usually not known in
advance of sampling, being calculated from the marginal observed fre-
quencies, In such cases the experimenter may be forced to choose
between a posteriori pooling and using too small an expected frequency,
assumptions being violated under either alternative. However, in test-
ing goodness of fit to a completely known and tabled continuous function
the issue can be avoided because sufficient information is available to
set, in advance, the minimum expected frequency which the experimenter
is willing to tolerate. The ""X-axis'' of the distribution to which fit is
being tested is divided into k intervals so that the area under the curve
above each interval is the same for every interval, each such area there-
fore equaling 1/k. Each interval therefore is a category whose prob-
ability is 1/k, and if n observations are taken, the expected frequency
for each category is n/k. (See 42 and 63)
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